マツダ技報 2022 No.39
54/275

λb・2Zone Mode/Heat Balance・Statistical model+−D+++PI lΣΣ②③③ΣΣΦΦPI++++−DTCll1③③CT1 ]0000%%00]]]II ・Accelerator ・Brake・Handle]h/gAC Model[ xONwaRλb・Statistical model・2Zone Mode/Heat Balanceoitar ecneaviuqE]hWk/g[ CFSB・Accelerator ・Brake・Handle]2.2Lh/2.7Lg3.0L[ x3.3LO3001003.8LNEngine Torque [Nm]waR③Turbocharger Thermal Flow・High Accuracy Measurement・Corrected for Efficiency due to Heat Transfer・Interpolation/Extrapolation Technique Based on TheoryHeatThermal ModelExtended Compressor MapsQuantity②Bearing Friction LossesnoitcirF CToitar ecneaviuqE[ xONwaR]hWk/g[ CFSB l[ xQubONwaR leuF Fig. 11 Engine Displacement Study Results for NOx & Fuel Fig. 11 Engine Displacement Study Results for NOx & Fuel mk/gm[ tnemevorpm300100Engine Torque [Nm]noitcirF CTnoit[ ptnmeumsneovoCrp: representative excess air ratio of the burned zone m: heat transfer correction factor: fuel energy : gross indicated work : exhaust loss : cooling loss : heat loss due to incomplete combustion mIntake Airk/Sensible HeatgmCwQfWiQexQcoolQubλb―45―ControCooperative②Map-BasedQcoolQexWiQf①C①TQubDisplacement:2.2LQcoolQex①Flow Characteristic of Impeller Wheel・High Accuracy Measurement・Corrected for Efficiency due to Heat Transfer・Interpolation/Extrapolation Technique Based on TheoryUnitExtended Compressor MapsValidationWi③Turbocharger Thermal Flow②Bearing Friction Losses①C①T Fig. 2 Development Concept of New Generation Diesel Engine モデル改善を行ってきた。特に,過給モデルに対しては 高精度なリグ計測により,タービン/コンプレッサーの 翼車効率と熱損失を切り分け,モデル化を行うことで高 精度な性能予測を可能とした(Fig. 4)。また,燃焼モデ ルはGTPOWER内のDIPulseモデル,マツダ内製の2領 域簡易燃焼モデル(3),既存エンジン特性を取り込んだ統 計モデルを検討目的に応じて使い分けるが,新しい燃焼 を扱う場合には3DCFDの予測を用いる場合もある。い ずれにおいても熱効率を支配する因子を正しく切り分け, モデル化することで各々の機能への配分を可能としてい る。このように物理式に基づき,支配する機能因子ごとFig. 2 Development Concept of New Generation Diesel Engine にモデル化することで新規のエンジン開発においても正 しく性能を予測することが可能となる。 SimpleControlLiB/PnBModelorControlValueModel(MILS)On Board ControlInverterConverterSensorValueMotorModelTarget Value/Control ValuePhysical Value/Sensor ValueGT-POWERAchieved fuel economy of T/CModelLiB/PnBModelSimpleControlControlValueorInverterConverterOn Board Control(MILS)ModelMotorModelSensorValuePhysical Value/Sensor ValueTarget Value/Control ValueGT-POWERT/CModelFrictionModelPlantPlantElectric ModelControl ModelInput:・Vehicle Speed・Mode・EnvironmentDriver ModelEngine System Model1D-Air-Pass ModelElectric Model①Flow Characteristic of Impeller WheelInput:・Vehicle Speed・Mode・EnvironmentControl ModelDriver ModelEngine System Model1D-Air-Pass Model100GT-POWER10(FRM)GT-POWERGT-POWER-xRTModel Complexity0.1TorqueVehicle SpecRunning ResistanceCoupledVibrationSystem ModelLiVehicleSpeedHeatBrakeModelQuantityTemp.RotationalSpeedTorqueHeat LossHeatIndicated thermal efficiency TargetQuantityModel3D-CFDSpray & CombustionModelTemp.SCRAftertreatmentDOCSCRFDOCDPFCoupledVibrationSystem ModelRunning ResistanceVehicle SpecTorqueVehicleSpeedLiBrakeModelRotationalTemp.TorqueSpeedHeat LossQuantityModelHeat3D-CFDSpray & CombustionModelTemp.SCRAftertreatmentDOCSCRFDOCDPFVehicle ModelDriving System ModelModelTransmissionThermal ModelModelFront End 8speed AT w/oTorque ConverterCombustion Model0D-2Zone Model/Static ModelIncrease air volumeCoolingStructure Model(3D-FEM)Output:・EmissionsModelDriving System ModelVehicle ModelTransmissionModelFront End ModelCombustion Model0D-2Zone Model/Static ModelCoolingCooling Circuit ModelToilStructure Model(3D-FEM)40℃90℃110℃Output:・EmissionsModelConcept/TargetSystem DesignModel BuildingExtended Turbine MapsEnsuring AccuracyPartHardDesignValidationSoft DesignHard & SoftProductionToil40℃90℃110℃Concept/TargetModel BuildingEnsuring AccuracySystem DesignHardDesignValidationSoft DesignHard & SoftProductionHeatQuantityTemperatureFront endRadiator/ CondenserGT-SUITEQuantityTemperatureGT-SUITETemperatureLiQcoolPcylEGR/CExhaust LossTurboFrictionIVC StateQuantityS-VTI/CTemperatureMass FlowRaw EMDOCSCRFSCRDOCDPFSystem ModelCoupled Vibration MotorStarterAT2.2LATLub.2.7LTire3.0L3.3L3.8LTemperatureHeat QuantityAC LoadLiBSpeedDCDCPbBat.RotationalHeat QuantityShaftTorqueMotorInverterLiTemperatureHeatEGR/CQcoolPcylTurboFrictionExhaust LossIVC StateQuantityI/CS-VTTemperatureMass FlowRaw EMDPFSCRSCRFDOCDOCZone Imageλb=λallFuel moleculeOxygen moleculeH.R.R.Crank AngleMvEngineEOPMotorTransmissionCdFAAir ResistanceFlywheelTireInputSlopeMountRollingRRCMOPDriveShaftResistanceResistanceDriveing ForceAccelerationResistanceH.R.R.Crank AngleMotor ControlStateQuantitySensingValueEngine Control【On-board】EffectiveValueControlValueCAN/LINCurrentBrake ControlConsumptionMotor ControlStateQuantitySensingValueEngine Control【On-board】ControlValueEffectiveValue+-MvCdFARRCLossLossExhaustNOxHCCOSootGrossWorkSootNO+-CdFAMvRRCNOxHCCOSootExhaustLossGrossWorkCenterHousingTurbineHousingAmbientLossSootOilTurbineWheelNOShaftAmbientCenterHousingTurbineHousingTurbineWheelShaft+-CoolingLossFrictionLossGrossWorkNOxHCCOSootIVC StateInjection+-CoolingLossLossFrictionGrossWorkNOxHCCOSootIVC StateInjectionTCMT/M Control【On-board】SGC2SensorModelPCMActuatorModelVehicleControlBrakeModelDSCTCMT/M Control【On-board】SGC2PCMSensorModelActuatorModelLT RadiatorCoolant(LT)HT RadiatorCoolant(HT)Oil CoolerOilExhaustSensible HeatHeat Radiation to AmbientBrake WorkAchieved fuel economy of Expansion of EGR regionformer small car and strong hybridPursue Ideal Combustion that meet the domestic RDEwo/ NOx reduction catalystPowerful acceleration and sound follows accelerator operationExpansion of EGR regionformer small car and strong hybridPursue Ideal Combustion that meet the domestic RDEFrictionwo/ NOx reduction catalystModelCalculation Speed(×Real Time)DetailFRMFRM+ xRTCalculation Speed(×Real Time)100DetailGT-POWER10GT-POWERFRM(FRM)FRM+ xRTGT-POWER-xRT0.1Map-BasedModel ComplexityFlywheelTireInputEngineDriveShaftTransmissionRollingRollingResistanceResistanceMountAir ResistanceDriveing ForceAccelerationResistanceSlopeResistanceEOPMotorMOPH.R.R.Crank AngleTemperature ℃TransmissionDriveShaftEngineInputFlywheelTireAccelerationResistanceDriveing ForceAir ResistanceMountResistanceResistanceRollingSlopeRollingResistanceEOPMotorMOPH.R.R.Crank AngleTemperature ℃CompressorHousingCompressorWheelCompressorHousingCompressorWheelOilCooling Circuit(HT / LT / ATF)Output:・Vehicle Speed・DrivingPerformance・Fuel ConsumptionModelEnvironmentDriver ModelA/C ModelThermal ModelCooling Circuit(HT / LT / ATF)Output:・Vehicle Speed・DrivingPerformance・Fuel ConsumptionA/C ModelVehicleCrank Angle [deg.ATDC]noiApparenttpmHeatRelease uRatesnoCValidationIntake ManifoldFresh AirSensible HeatVehicleValidationUnitValidationPartEngine Unit ModelCombustionAir-Pass ModelModelAftertreatment ModelDrivetrain / Mechanical ModelRunning ResistanceElectric Drive Devise/LoadModelModelCombustionAir-Pass ModelEngine Unit ModelModelAftertreatment 1zoneλb2zoneHeadLiner/BlockPistonExhaust Water JacketHP-EGRT/CPumpingLP-EGRCrank shaftLossMechanicalOil PumpLossValve TrainFuel PumpFEADRollingResistanceFig. 3 Schematic of 1D Functional Model Improvement of Calculation Speed and Model Application to V-Process Fig. 4 Functional Modeling of TurboFig. 4 Functional Modeling of Turbo Fig. 3 Schematic of 1D Functional Model Fig. 4 Functional Modeling of Turbo Fig. 5 Improvement of Calculation Speed and Model Fig. 5 Improvement of Calculation Speed and Model Application to VProcessApplication to V-Process 2.3 エンジン熱勘定モデル/サーマルモデル システム最大の発熱源であるエンジンの熱勘定モデル についての工夫をFig. 6に示す。ディーゼル燃焼によって発生する冷却損失と排気損失はエンジン筒内,LPEGRControlled System Modelクーラー,インタークーラーを介して高温,低温冷却水回路に入熱され,冷却水を通じて電駆デバイスやトランスミッションに影響を与える。従って,ディーゼル燃焼における熱勘定を正確に行うことは確度の高いサーマルマネージメント解析を実施する上での鍵となる。熱勘定については,計測されるトルクや指圧線図から正味仕事,ポンプ損失,機械損失を求めた上で,指圧線図の解析かFig. 9 NOx Characteristic with Different Displacement ら得られる見かけの熱発生率の積算値と,投入熱量から未燃損失を除いた真の発熱量との差を冷却損失とする手法がある。この際,比熱比の扱いが結果に大きく影響するが,実際のディーゼル燃焼は燃料が空間的に不均質に 分布するため,燃焼が起きている局所の当量比や比熱比の変化を模擬する必要がある。マツダはこのようなディーゼル燃焼の不均質さを簡単に模擬するための2領域簡易燃焼モデル(3)を構築し,計測データに基づく熱勘定推定の高精度化を図った上で,さまざまな運転条件にFig. 10 BSFC Characteristic with Different Displacement おいて筒内冷却損失の推定を可能とし,これを用いてエンジンユニットモデルの筒内冷却損失に関する熱伝達率に掛かる係数(Cw)を同定した。これに基づき式(1)に示す回転数(NE),筒内状態量(燃料噴射量:Qinj,吸Fig. 9 NOx Characteristic with Different Displacement Fig. 10 BSFC Characteristic with Different Displacement In-Engine Unit (Thermal FlowAnalysis)2100Inter CoolerPressureFig. 8 Schematic of High Speed MILS In-Cylinder (Heat Balance Analysis)20g/kWhFig. 8 Schematic of High Speed MILS Fig. 6 Heat Flow Model in the EngineConsumption DisplacementDisplacement2.2L2.7L3.0L3.3L3.8LDisplacement50mg/kmTargetDisplacement2.2L2.7L3.0L3.3L3.8LGood1%Crank Angle [deg.ATDC]euF50mg/kmTargetGoodGood1%Consumption 20g/h200100Engine Torque [Nm]20g/h40020030060090012001500200100Engine Torque [Nm]20g/kWhGoodQfCwλb20040012141618Total Energy Demand for WLTC [MJ]1500VehicleCurb Weight [kg]12001800Total Energy Demand for WLTC [MJ]1214161500VehicleCurb Weight [kg]120018002100Displacement2.2L2.7L3.0L3.3L3.8L2zone1zoneDisplacement2.2L2.7L3.0L3.3L3.8L400300Displacement:2.2LPreviousNewEngine BMEP [kPa]400300PreviousNew30060090012001500Engine BMEP [kPa]20240018202400EmissionsClean emissions Value DeliveredEnhanced FunctionPerformanceFuel Economy・CO2Highest level of thermal efficiencyEmissionsClean emissions Adopted TechnologyTurbo AssumptionIncrease air volumeIndicated thermal efficiency TargetFriction TargetFriction ReductionP2+48V Mild HybridStarting Performance/Acceleration responseenergy and motor DriveMaximization of generative Down speedDisplacement TargetTurbo AssumptionFriction TargetFriction ReductionExtended Turbine MapsTC SpeedMILSHILSSILSTC SpeedMILSSILSHILSNew Generation DESKYACTIV-D 3.3Cooling Circuit ModelTrue Heat ReleaseApparent Heat ReleaseCrank Angle [deg.ATDC]IVCController ModelEVO 一方で,一般的に詳細な1Dモデルは計算コストが高く,他ユニットモデルとの連成や数多くの検討に対しては不向きである。この点は開発が進むほどにモデル活用の障壁となる。そこで,本開発においては,精度と計算コストの最適なバランスをとり簡素化したFast Running Model(FRM)を構築し,更にGTPOWERをより高速に演算可能なGTPOWERxRTソルバーを適用することで,詳細モデル同等の精度を確保しつつ計算時間を1/60にまで短縮し実時間よりも速く演算可能とした。これによFig. 5 り開発上流から下流まで1つのモデルを再利用し続けることが可能となり,開発段階ごとでのモデル精度確保を容易にし,モデル環境整備の効率化を実現した(Fig. 5)。

元のページ  ../index.html#54

このブックを見る